Type de publication : article
Definition of Critical Currents in Superconducting Magnetic Energy Storage Systems
57
Vues
Résumé :
Superconducting magnetic energy storage (SMES) systems are expected to be very prospective and flexible energy storage elements of future electric grid interconnectors based on renewable power sources. Superconducting storage elements may be characterized by such important parameters as a very fast response on variation of the energy generation conditions and consumption as well as a very high efficiency reaching 95%. In practice the quality of the power generated in renewable power systems depends strongly on fast variations in such natural factors as solar radiation or the wind velocity and abrupt change in the load. The SMES device is one of the best choices to overcome the corresponding fluctuation of a generated power. The basis of future SMES systems is assumed to be a coil set wound with high temperature superconducting tape. One of the problems to be solved in such a case is definition of the coil critical current. It is well known that the critical current density de-pends on the induced magnetic field intensity. The main difficulty in theoretical prediction of these characteristics is essential non-uniform current density distribution in the superconducting tapes. In this paper we propose a new method of the SMES coils description using a solution of an integral equation based on the critical state theory of 2-nd type superconductors and magnetic field laws.
Auteurs :
Mots clés :
Mots clés de JLST
Mots clés de l'auteur
Magnetic field; superconductivity; critical current; renewable energy sources; energy storage; integral equations;
Références bibliographique :
[1] B. Sorensen, Renewable energy: physics, engineering, environmental impacts, economics and planning, 5th ed., Academic Press, Cambridge, 2017.
[2] J. Twidell, and T. Weir, Renewable Energy Resources, 3rd ed. Routledge, Oxford-shire, 2015.
[3] W. Yuan, “Second-generation high-temperature superconducting coils and their applications for energy storage”, University of Cambridge, 2011.
[4] L Chen., H. Chen, Y. Li, G. Li, J. Yang, X. Liu, Y. Xu, L. Ren, and Y. Tang, “SMES-battery energy storage system for stabilization of a photovoltaic-based microgrid”, IEEE Trans. Appl. Supercond., vol. 28 n° 4, 2018, pp. 1–7. DOI: 10.1109/TASC.2018.2799544.
[5] I. Ngamroo, “An optimization of superconducting coil installed in an hvdc-wind farm for alleviating power fluctuation and limiting fault current”, IEEE Trans. Appl. Supercond., vol. 29 n° 2, 2019, pp. 1–5. DOI: 10.1109/TASC.2018.2881993.
[6] H. Jiang, and C. Zhang, “A method of boosting transient stability of wind farm connected power system using superconducting magnetic energy storage unit”, IEEE Trans. Appl. Supercond., vol. 29, n° 2, 2019, pp. 2–6. DOI: 10.1109/TASC.2019.2892291.
[7] A. M. S. Yunus, M. A. S. Masoum, and A. Abu-Siada, “Application of SMES to enhance the dynamic performance of DFIG during voltage sag and swell”, IEEE Trans. Appl. Supercond., vol. 22, n° 4, 2012. DOI: 10.1109/TASC.2012.2191769.
[8] L. Chubraeva, and T. Sergey, “Project of autonomous power plant with high-temperature superconductive devices”, 2018 Int. Multi- Conference Ind. Eng. Mod. Technol., Vladivostok, 2018, pp. 1–5. DOI: 10.1109/FarEastCon.2018.8602671.
[9] A. W. Zimmermann, and S. M. Sharkh, “Design of a 1 MJ/100 kW high temperature superconducting magnet for energy storage”, Energy Reports, vol. 6, n° 5, 2020, pp. 180–188. DOI: 10.1016/j.egyr.2020.03.023.
[10] M. A. Al Zaman, M. R. Islam, and H. M. A. R. Maruf, “Study on conceptual designs of superconducting coil for energy storage in SMES”, East Eur. J. Phys., vol. 1, 2020, pp. 111–120. DOI: 10.26565/2312-4334-2020-1-10.
[11] M. H. Ali, B. Wu, and R. A. Dougal, “An overview of SMES applications in power and energy systems”, IEEE Trans. Sustain. Energy, vol. 1, n° 1, 2010, pp. 38–47. DOI: 10.1109/TSTE.2010.2044901.
[12] M. N. Wilson, Superconducting Magnets. Clarendon Press, Walton Street, 1987.
[13] W. Yuan, A. M. Campbell, and T. A. Coombs, “A model for calculating the AC losses of second-generation high temperature superconductor pancake coils”, Supercond. Sci. Technol., vol. 22, n° 7, 2009, pp. 12- 21. DOI: 10.1088/0953-2048/22/7/075028.
[14] V. M. Pan, A. L. Kasatkin, V. L. Svetchnikov, V. A. Komashko, A. G. Popov, A. Y. Galkin, H. C. Freyhardt, and H. W. Zandbergen, “Critical current density in highly biaxially-oriented YBCO films: Can we control JC(77K) and optimize up to more than 106 Amp/cm2?”, IEEE Trans. Appl. Supercond., vol. 9, n° 2, 1999, pp. 1535–1538. DOI: 10.1109/77.784686.
[15] D. Yu, H. Liu, X. Zhang, and T. Gong, “Critical current simulation and measurement of second generation, high-temperature superconducting coil under external magnetic field”, Materials (Basel), vol. 11, n° 3, 2018, pp. 339-349. DOI: 10.3390/ma11030339.
[16] Z. Jiang, K. P. Thakur, M. Staines, R. A. Badcock, N. J. Long, R. G. Buckley, A. D. Caplin, and N. Amemiya, “The dependence of AC loss characteristics on the spacing between strands in YBCO Roebel cables”, Supercond. Sci. Technol., vol. 24, n° 6, 2011. DOI: 10.1088/0953-2048/24/6/065005.
[17] N. Amemiya, S. I. Murasawa, N. Banno, and K. Miyamoto, “Numerical modelings of superconducting wires for AC loss calculations”, Phys. C Supercond. its Appl., vol. 310, 1998, pp. 16–29. DOI: 10.1016/S0921- 4534(98)00427-4.
[18] N. Nibbio, S. Stavrev, and B. Dutoit, “Finite element method simulation of AC loss in HTS tapes with B-dependent E-J power law”, IEEE Transactions on Applied Superconductivity, vol. 11, n° 1, 2001, pp. 2631–2634. DOI: 10.1109/77.920408.
E. Berrospe-Juarez, V. M. R. Zermeño, F. Trillaud, and F. Grilli,
[19] “Real-time simulation of large-scale HTS systems: multi-scale and homogeneous models using T-A formulation”, Supercond. Sci. Technol., vol. 32, n° 6, 2019. DOI: 10.1088/1361-6668/ab0d66.
[20] G. G. Sotelo, M. Carrera, J. Lopez-Lopez, and X Granados., “H- formulation fem modeling of the current distribution in 2G HTS tapes and its experimental validation using hall probe mapping”, IEEE Transactions on Applied Superconductivity, vol. 26, n° 8, 2016, pp. 1- 10. DOI: 10.1109/TASC.2016.2591825.
[21] V. M. R. Zermeno, A. B. Abrahamsen, N. Mijatovic, B. B. Jensen, M. P. Sørensen, “Calculation of alternating current losses in stacks and coils made of second generation high temperature superconducting tapes for large scale applications”, J. Appl. Phys., vol. 114, n° 17, 2013. DOI: 10.1063/1.4827375.