Boîte de Dialogue Personnalisée
×

Titre du Message

Contenu du message...

J'aime Les Sciences et Technologies

Type de publication : article

Application of the Fireworks Algorithm to the Superconducting Coil Design for Magnetic Energy Storage System

Relayé par : JLST Sauvegarder l'article!

Aller à l'article

BAGAN G. Steve Sèdjro

56
Vues


Résumé :

This article describes an optimal design approach for a double-layer coil, intended for a superconducting magnetic energy storage system. The method is based on the fireworks algorithm. Under a maximum mechanical stress of 500 MPa, the coil stores an energy of approximately 150 J for a total length of 200 m of 2G HTS tape 12 mm wide operating at a temperature of 77 K.

Auteurs :
Mots clés :

Mots clés de JLST


Mots clés de l'auteur
Renewable energy; second-generation high- temperature superconductors; superconducting magnetic energy storage; fireworks optimization algorithm; mechanical stress


Références bibliographique :

[1] Chawda G. S., Shaik. A. G., Shaik M., Padmanaban S., Holm-Nielsen J. B., Mahela O. P., Kaliannan P. Comprehensive review on detection and classification of power quality disturbances in utility grid with renewable energy penetration. IEEE Access, 2020, vol. 8, pp. 146807– 146830. doi: 10.1109/ACCESS.2020.3014732.
[2] Trillaud F., Cruz L. S. Conceptual design of a 200-kj 2g-hts solenoidal μ -SMES. IEEE Trans. Appl. Supercond., 2014, vol. 24, no. 3, pp. 1–5. doi: 10.1109/TASC.2013.2284478.
[3] Zimmermann A. W., Sharkh S. M. Design of a 1 MJ / 100 kW high temperature superconducting magnet for energy storage. Energy Reports, 2020, vol. 6, no. 5, pp. 180–188. doi: 10.1016/j.egyr.2020.03.023.
[4] Korovkin N. V., Potienko A. A. The use of a genetic algorithm for solving electric engineering problems. Elektrichestvo [Electricity], 2002, vol. 11, pp. 2–15, ISSN 00135380. (in Russian)
[5] Nitsch J., Korovkin N., Solovyeva E., Scheibe H. J. Occurrence of low-frequency noises in electronic systems under action of two-tone high-frequency electromagnetic excitation. IEEE International Symposium on Electromagnetic Compatibility, 2005, pp. 618–621, doi: 10.1109/ISEMC.2005.1513588.
[6] Dubitsky S. D., Korovkin N. V., Hayakawa M., Silin N. V. Thermal resistance of optical ground wire to direct lightning strike. 2013 International Symposium on Electromagnetic Theory, EMTS 2013 - Proceedings, 2013, pp. 108–111, ISBN 978-488552277-2.
[7] Aza-Gnandji M., Fifatin F. X., Hounnou A. H. J., Dubas F., Chamagne D., Espanet Christophe, Vianou A. Complementarity between Solar and Wind Energy Potentials in Benin Republic. Adv. Eng. Forum, 2018, vol. 28, pp. 128–138, doi: 10.4028/www.scientific.net/aef.28.128.
[8] Shehata A. A., Refaat A., Ahmed M. K., Korovkin N. V. Optimal placement and sizing of FACTS devices based on Autonomous Groups Particle Swarm Optimization technique, Arch. Electr. Eng., 2021, vol. 70, no. 1, pp. 161–172, doi: 10.24425/aee.2021.136059.
[9] Noguchi S., Yamashita H., Ishiyama A. An Optimal Design Method for SMES Coils Using HTS Tapes. IEEE Trans. Appl. Supercond., 2002, vol. 12, no. 1, pp. 1459–1462. doi: 10.1109/TASC.2002.1018677.
[10] Noguchi S., Yamashita H., Ishiyama A. An optimization method for design of SMES coils using YBCO tape. IEEE Trans. Appl. Supercond., 2003, vol. 13, no. 2, pp. 1856–1859. doi: 10.1109/TASC.2003.812925.
[11] Noguchi S., Inaba Y., Igarashi H. An optimal configuration design method for HTS-SMES coils taking account of thermal and electromagnetic characteristics, IEEE Trans. Appl. Supercond., 2008, vol. 18, no. 2, pp. 762–765. doi: 10.1109/TASC.2008.921972.
[12] Yanbo C., Cheng K. W. E. The Optimal Parameters Design of HTS- SMES Magnets. 2006 2nd International Conference on Power Electronics Systems and Applications, 2006, pp. 126–131, doi: 10.1109/PESA.2006.343084.
[13] Higashikawa K., Nakamura T., Shikimachi K., Hirano N., Nagaya S., Kiss T. Conceptual design of HTS coil for SMES using YBCO coated conductor. IEEE Trans. Appl. Supercond., vol. 17, no. 2, pp. 1990– 1993, 2007, doi: 10.1109/TASC.2007.898947.
[14] Xinjie Y., Ming S. Optimization design of SMES solenoids considering the coil volume and the magnet volume, IEEE Trans. Appl. Supercond., 2008, vol. 18, no. 2, pp. 1517–1520, doi: 10.1109/TASC.2008.921968.
[15] Sun Q., Zhang Z., Lin L., Qiu Q., Liu D., Zhang G, Dai S. Design method of SMES magnet considering inhomogeneous superconducting properties of YBCO tapes. IEEE Trans. Appl. Supercond., 2014, vol. 24, no. 3, pp. 1–5, doi: 10.1109/TASC.2014.2304241.
[16] Hekmati A., Hekmati R. Double pancake superconducting coil design for maximum magnetic energy storage in small scale SMES systems. Cryogenics, 2016, vol. 80, pp. 74–81, doi: 10.1016/j.cryogenics.2016.09.009.
[17] Cherpak Y. V., Komashko V. A., Pozigun S. A., Semenov A. V., Tretiatchenko C. G., Pashitskii, E. A., Pan V. M. Critical current density of HTS single crystal YBCO thin films in applied dc field. IEEE Trans. Appl. Supercond., 2005, vol. 15, no. 2, pp. 2783–2786, doi: 10.1109/TASC.2005.848212.
[18] Pan V. M., Pan V. M., Kasatkin A. L., Svetchnikov V. L., Komashko V. A., Popov A. G., Galkin A. Yu., Freyhardt H. C., Zandbergen H. W. Critical current density in highly biaxially-oriented YBCO films: Can we control JC(77K) and optimize up to more than 106 Amp/cm2?. IEEE Trans. Appl. Supercond., 1999, vol. 9, no. 2, pp. 1535–1538, doi: 10.1109/77.784686.
[19] Yu D., Liu H., Zhang X., Gong T., Critical current simulation and measurement of second generation, high-temperature superconducting coil under external magnetic field, Materials (Basel, Switzerland), 2018, vol. 11, no. 3, 339, doi: 10.1038/s41524-018-0085-8.
[20] Kalimov A. G., Bagan S., Govor V. M. Modeling of the superconducting coil critical state in the inductive energy storage systems. Glob. Energy, 2022, vol. 28, no. 3, pp. 7–17, doi: 10.18721/JEST.28301. (in Russian)
[21] Xia J., Bai H., Yong H., Weijers H. W., Painter T. A., Bird M. D., Stress and strain analysis of a REBCO high field coil based on the distribution of shielding current. Supercond. Sci. Technol., 2019, vol. 32, no. 9, 095005, doi: 10.1088/1361-6668/ab279c.
[22] Zhang Y., Hazelton D. W., Kelley R., Kasahara M., Nakasaki R., Sakamoto H., Polyanskii A. Stress-Strain Relationship, Critical Strain (Stress) and Irreversible Strain (Stress) of IBAD-MOCVD-Based 2G HTS Wires under Uniaxial Tension, IEEE Trans. Appl. Supercond., 2016, vol. 26, no. 4, pp. 1–6, doi: 10.1109/TASC.2016.2515988.
[23] Yan Y., Xin C., Guan M., Liu H., Tan Y., Qu T. Screening current effect on the stress and strain distribution in REBCO high-field magnets: Experimental verification and numerical analysis. Supercond. Sci. Technol., 2020, vol. 33, no. 5, pp. 1–4, doi: 10.1088/1361-6668/ab7c52.
[24] Imran M., Kowsalya M. A new power system reconfiguration scheme for power loss minimization and voltage profile enhancement using Fireworks Algorithm. Int. J. Electr. Power Energy Syst., 2014, vol. 62, pp. 312–322, doi: 10.1016/j.ijepes.2014.04.034.
[25] Reddy K. S., Panwar L. K., Kumar R., Panigrahi B. K. Distributed resource scheduling in smart grid with electric vehicle deployment using fireworks algorithm. J. Mod. Power Syst. Clean Energy, 2016, vol. 4, no. 2, pp. 188–199, doi: 10.1007/s40565-016-0195-6.
[26] Zhang Q., Liu H., Dai C. Fireworks Explosion Optimization algorithm for parameter identification of PV model. 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), 2016, pp. 1587–1591, doi: 10.1109/IPEMC.2016.7512529.
[27] Tan Y., Zhu Y. Fireworks algorithm for optimization. Advances in Swarm Intelligence. ICSI 2010. Lecture Notes in Computer Science, 2010, vol. 6145, pp. 355–364, doi: 10.1007/978-3-642-13495-1_44.
[28] Tan Y. Fireworks algorithm: a novel swarm intelligence optimization method. 1st
ed. Berlin Heidelberg, Springer-Verlag, 2015. 323 p.
[29] Li X. G., Han S. F., Gong C. Q. Analysis and improvement of fireworks algorithm. Algorithms, 2017, vol. 10, no. 1, 26, doi: 10.3390/a10010026.
[30] Li J., Tan Y. A comprehensive review of the fireworks algorithm. ACM Comput. Surv., 2019, vol. 52, no. 6, p. 28, doi: 10.1145/3362788.
[31] Zheng S., Li J., Janecek A., Tan Y. A cooperative framework for fireworks algorithm. IEEE/ACM Trans. Comput. Biol. Bioinforma, 2017, vol. 14, no. 1, pp. 27–41, doi: 10.1109/TCBB.2015.2497227.
[32] SuperPower Inc.: 2G HTS Wire Specification. Available at: https://www.superpower-inc.com/specification.aspx (accessed 10 Novenber 2022).
[33] Radcliff K. Mechanical properties of SuperPower and SuNam REBCO coated conductors. Mast. Diss. Florida State, 2018. 46 p. Available
at:https://diginole.lib.fsu.edu/islandora/object/fsu:661170/datastream/PD F/view (accessed
07 Novenber 2022).