Boîte de Dialogue Personnalisée
×

Titre du Message

Contenu du message...

J'aime Les Sciences et Technologies

Type de publication : article

Multi-objective Optimization of 2G-HTS Coil for Magnetic Energy Storage System Using NSGA-II Algorithm

Relayé par : JLST Sauvegarder l'article!

Aller à l'article

BAGAN G. Steve Sèdjro

56
Vues


Résumé :

Superconducting magnetic energy storage (SMES) offer a promising solution to address the stability challenges associated with integrating renewable energy sources into electrical grids. In this study, we propose an optimal design for a double pancake superconducting coil using the NSGA-II algorithm. The coils are composed of second-generation high- temperature superconductors (2G-HTS). The problem is formulated a mixed variable optimization problem with 4 decision variables and 2 fitness functions which are the total energy stored and the mechanical stress of the coil. The decision variables are the total length of the coil, the inner radius of the coil, the distance inter pancakes and the width of the tape. Mathematical models for energy and mechanical stress are implemented in a MATLAB function. The optimization code is developed using the well-known pymoo framework in Python programming language. This code utilizes the MATLAB engine to make multiple calls to the MATLAB function for fitness evaluation within the Python environment. The Pareto set illustrates the best trade-off between the two fitness functions, while the corresponding variables span the search space. Among the search space variables for the double pancake at 77°K, the configuration featuring a 500 m long, 12 mm wide YBCO tape with an inner radius of 110 mm and an inter-pancake distance of approximately 20 mm exhibits the most interesting results at the elbow of the Pareto front. This configuration achieves an accumulated energy of 1.4 kJ and a mechanical stress of 600 MPa.

Auteurs :
Mots clés :

Mots clés de JLST


Mots clés de l'auteur
2G-HTS; Energy stored; NSGA-II; SMES coil; mechanical stress


Références bibliographique :

[1]I. D. Ibrahim et al., “A review on Africa energy supply through renewable energy production: Nigeria, Cameroon, Ghana and South Africa as a case study,” Energy Strategy Rev., vol. 38, p. 100740, 2021, DOI: 10.1016/j.esr.2021.100740.
[2] M. H. Ali, B. Wu, and R. A. Dougal, “An overview of SMES applications in power and energy systems,” IEEE Trans. Sustain. Energy, vol. 1, no 1, pp. 38‑47, 2010, DOI: 10.1109/TSTE.2010.2044901.
[3] L. Chen et al., “SMES-battery energy storage system for the stabilization of a photovoltaic-based microgrid,” IEEE Trans. Appl. Supercond., vol. 28, no 4, pp. 1‑7, juin 2018, DOI: 10.1109/TASC.2018.2799544.
[4] H. Jiang and C. Zhang, “A method of boosting transient stability of wind farm connected power system using magnetic energy storage unit,” IEEE Trans. Appl. Supercond., vol. 29, no 2, pp. 2‑6, 2019, DOI: 10.1109/TASC.2019.2892291.
[5] P. Mukherjee and V. V. Rao, “Superconducting magnetic energy storage for stabilizing grid integrated with wind power generation systems,” J. Mod. Power Syst. Clean Energy, vol. 7, no. 2, pp. 400– 411, 2019, DOI: 10.1007/s40565-018-0460-y.
[6] Z. Wang, Z. Zou, and Y. Zheng, “Design and Control of a Photovoltaic Energy and SMES Hybrid System With Current-Source Grid Inverter,” IEEE Trans. Appl. Supercond., vol. 23 (3), no. June, 2013, DOI: 10.1109/TASC.2013.2250172.
[7] J. Lee and S. K. Joo, “Stochastic method for the operation of a power system with wind generators and Superconducting Magnetic Energy Storages (SMESs) ,” IEEE Trans. Appl. Supercond., vol. 21, no. 3 PART 2, pp. 2144–2148, 2011, DOI: 10.1109/TASC.2010.2096491.
[8] M. Saejia and I. Ngamroo, “Alleviation of power fluctuation in interconnected power systems with wind farm by SMES with optimal coil size,” IEEE Trans. Appl. Supercond., vol. 22, no. 3, pp. 22–25, 2012, DOI: 10.1109/TASC.2011.2178984.
[9] S. Noguchi, H. Yamashita, and A. Ishiyama, “An optimization method for design of SMES coils using YBCO tape,” IEEE Trans. Appl. Supercond., vol. 13, no 2, pp. 1856‑1859, 2003, DOI: 10.1109/TASC.2003.812925.
[10] A. Hekmati and R. Hekmati, “Double pancake superconducting coil design for maximum magnetic energy storage in small scale SMES systems,” Cryogenics, vol. 80, pp. 74‑81, 2016, DOI: 10.1016/j.cryogenics.2016.09.009.
[11] Q. Sun et al., “Design Method of SMES Magnet Considering Inhomogeneous Superconducting Properties of YBCO Tapes,” IEEE Trans. Appl. Supercond., vol. 24, no. 3, pp. 1–5, 2014, doi: 10.1109/TASC.2014.2304241.
[12] Y. Xinjie and S. Ming, “Optimization Design of SMES Solenoids Considering the Coil Volume and the Magnet Volume,” IEEE Trans. Appl. Supercond., vol. 18, no. 2, pp. 1517–1520, 2008, DOI: 10.1109/TASC.2008.921968.
[13] A. H. Moghadasi, H. Heydari, and M. Farhadi, “Pareto optimality for the design of smes solenoid coils verified by magnetic field analysis,”IEEE Trans. Appl. Supercond., vol. 21, no. 1, pp. 13–20, 2011, DOI: 10.1109/TASC.2010.2089791.
[14] Y. Zhao and X. Yu, “Pareto competition based evolution strategy for two-objective optimization design of SMES solenoids,” IEEE Trans. Appl. Supercond., vol. 18, no. 2, pp. 1513–1516, 2008, DOI: 10.1109/TASC.2008.921971.
[15] L. S. Dos Coelho and P. Alotto, ‘Multiobjective electromagnetic optimization based on a nondominated sorting genetic approach with a chaotic crossover operator’, IEEE Trans. Magn., vol. 44, no. 6, pp. 1078–1081, 2008, doi: 10.1109/TMAG.2007.916027.
[16] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non- dominated sorting genetic algorithm for multi-objective optimization: NSGA-II,” Parallel Probl. Solving Nat. PPSN VI, pp. 849‑858, 2000, DOI: 10.1007/3-540-45356-3_83.
[17] F. Trillaud and L. S. Cruz, “Conceptual design of a 200-kj 2G-HTS solenoidal μ -SMES,” IEEE Trans. Appl. Supercond., vol. 24, no 3, pp. 1‑5, 2014, DOI: 10.1109/TASC.2013.2284478.
[18] A. W. Zimmermann and S. M. Sharkh, “Design of a 1 MJ / 100 kW high temperature superconducting magnet for energy storage,” Energy Rep., vol. 6, no 5, pp. 180‑188, 2020, DOI: 10.1016/j.egyr.2020.03.023.
[19] SuperPower Inc.: 2G HTS Wire Specification. Available at: https://www.superpower-inc.com/specification.aspx (accessed 25 February 2023).
[20] A. G. Kalimov, S. Bagan, and V. M. Govor, “Modeling of the superconducting coil critical state in the inductive energy storage systems,” Glob. Energy, vol. 28, no 3, pp. 7‑17, 2022, DOI: 10.18721/JEST.28301.
[21] B. C. Robert, M. U. Fareed, and H. S. Ruiz, “How to choose the superconducting material law for the modelling of 2G-HTS coils,” Materials, vol. 12, no 7, pp. 1‑19, 2019, DOI: 10.3390/ma12172679.
[22] J. Xia, H. Bai, H. Yong, H. W. Weijers, T. A. Painter, and M. D. Bird,
“Stress and strain analysis of a REBCO high field coil based on the distribution of shielding current,” Supercond. Sci. Technol., vol. 32, no 9, p. 095005, 2019, DOI: 10.1088/1361-6668/ab279c.
[23] Y. Zhang et al., “Stress-strain relationship, critical strain (stress) and irreversible strain (stress) of IBAD-MOCVD-based 2G HTS wires under uniaxial tension,” IEEE Trans. Appl. Supercond., vol. 26, no 4, pp. 1‑6, 2016, DOI: 10.1109/TASC.2016.2515988.
[24] Y. Yan, C. Xin, M. Guan, H. Liu, Y. Tan, and T. Qu, “Screening current effect on the stress and strain distribution in REBCO high-field magnets: Experimental verification and numerical analysis,” Supercond. Sci. Technol., vol. 33, no 5, pp. 1‑4, 2020, DOI: 10.1088/1361-6668/ab7c52.
[25] J. Blank and K. Deb, “Pymoo: Multi-Objective Optimization in Python,” IEEE Access, vol. 8, pp. 89497‑89509, 2020, DOI: 10.1109/ACCESS.2020.2990567.